111 research outputs found

    Justification of the symmetric damping model of the dynamical Casimir effect in a cavity with a semiconductor mirror

    Full text link
    A "microscopic" justification of the "symmetric damping" model of a quantum oscillator with time-dependent frequency and time-dependent damping is given. This model is used to predict results of experiments on simulating the dynamical Casimir effect in a cavity with a photo-excited semiconductor mirror. It is shown that the most general bilinear time-dependent coupling of a selected oscillator (field mode) to a bath of harmonic oscillators results in two equal friction coefficients for the both quadratures, provided all the coupling coefficients are proportional to a single arbitrary function of time whose duration is much shorter than the periods of all oscillators. The choice of coupling in the rotating wave approximation form leads to the "mimimum noise" model of the quantum damped oscillator, introduced earlier in a pure phenomenological way.Comment: 9 pages, typos corrected, corresponds to the published version, except for the reference styl

    Qubit portrait of the photon-number tomogram and separability of two-mode light states

    Full text link
    In view of the photon-number tomograms of two-mode light states, using the qubit-portrait method for studying the probability distributions with infinite outputs, the separability and entanglement detection of the states are studied. Examples of entangled Gaussian state and Schr\"{o}dinger cat state are discussed.Comment: 20 pages, 6 figures, TeX file, to appear in Journal of Russian Laser Researc

    The Noncommutative Harmonic Oscillator based in Simplectic Representation of Galilei Group

    Full text link
    In this work we study symplectic unitary representations for the Galilei group. As a consequence the Schr\"odinger equation is derived in phase space. The formalism is based on the non-commutative structure of the star-product, and using the group theory approach as a guide a physical consistent theory in phase space is constructed. The state is described by a quasi-probability amplitude that is in association with the Wigner function. The 3D harmonic oscillator and the noncommutative oscillator are studied in phase space as an application, and the Wigner function associated to both cases are determined.Comment: 7 pages,no figure

    Fluctuations, dissipation and the dynamical Casimir effect

    Full text link
    Vacuum fluctuations provide a fundamental source of dissipation for systems coupled to quantum fields by radiation pressure. In the dynamical Casimir effect, accelerating neutral bodies in free space give rise to the emission of real photons while experiencing a damping force which plays the role of a radiation reaction force. Analog models where non-stationary conditions for the electromagnetic field simulate the presence of moving plates are currently under experimental investigation. A dissipative force might also appear in the case of uniform relative motion between two bodies, thus leading to a new kind of friction mechanism without mechanical contact. In this paper, we review recent advances on the dynamical Casimir and non-contact friction effects, highlighting their common physical origin.Comment: 39 pages, 4 figures. Review paper to appear in Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Rosa. Minor changes, a reference adde

    General entanglement

    Get PDF
    The paper contains a brief review of an approach to quantum entanglement based on analysis of dynamic symmetry of systems and quantum uncertainties, accompanying the measurement of mean value of certain basic observables. The latter are defined in terms of the orthogonal basis of Lie algebra, corresponding to the dynamic symmetry group. We discuss the relativity of entanglement with respect to the choice of basic observables and a way of stabilization of robust entanglement in physical systems.Comment: 7 pages, 1 figure,1 tabe, will be published in special issue of Journal of Physics (Conference Series) with Proceedings of CEWQO-200

    Probability representation and quantumness tests for qudits and two-mode light states

    Full text link
    Using tomographic-probability representation of spin states, quantum behavior of qudits is examined. For a general j-qudit state we propose an explicit formula of quantumness witnetness whose negative average value is incompatible with classical statistical model. Probability representations of quantum and classical (2j+1)-level systems are compared within the framework of quantumness tests. Trough employing Jordan-Schwinger map the method is extended to check quantumness of two-mode light states.Comment: 5 pages, 2 figures, PDFLaTeX, Contribution to the 11th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'09), June 22-26, 2009, Olomouc, Czech Republi

    Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip

    Get PDF
    Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics

    Observation of a red-blue detuning asymmetry in matter-wave superradiance

    Full text link
    We report the first experimental observations of strong suppression of matter-wave superradiance using blue-detuned pump light and demonstrate a pump-laser detuning asymmetry in the collective atomic recoil motion. In contrast to all previous theoretical frameworks, which predict that the process should be symmetric with respect to the sign of the pump-laser detuning, we find that for condensates the symmetry is broken. With high condensate densities and red-detuned light, the familiar distinctive multi-order, matter-wave scattering pattern is clearly visible, whereas with blue-detuned light superradiance is strongly suppressed. In the limit of a dilute atomic gas, however, symmetry is restored.Comment: Accepted by Phys. Rev. Let

    Inverse spin-s portrait and representation of qudit states by single probability vectors

    Full text link
    Using the tomographic probability representation of qudit states and the inverse spin-portrait method, we suggest a bijective map of the qudit density operator onto a single probability distribution. Within the framework of the approach proposed, any quantum spin-j state is associated with the (2j+1)(4j+1)-dimensional probability vector whose components are labeled by spin projections and points on the sphere. Such a vector has a clear physical meaning and can be relatively easily measured. Quantum states form a convex subset of the 2j(4j+3) simplex, with the boundary being illustrated for qubits (j=1/2) and qutrits (j=1). A relation to the (2j+1)^2- and (2j+1)(2j+2)-dimensional probability vectors is established in terms of spin-s portraits. We also address an auxiliary problem of the optimum reconstruction of qudit states, where the optimality implies a minimum relative error of the density matrix due to the errors in measured probabilities.Comment: 23 pages, 4 figures, PDF LaTeX, submitted to the Journal of Russian Laser Researc

    Shortcuts to adiabaticity in a time-dependent box

    Full text link
    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential analogous to those used in soliton control. The method is extended to a broad family of many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.Comment: 6 pp, 4 figures, typo in Eq. (6) fixe
    • …
    corecore